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Density-functional electronic-structure calculations have been used to investigate the ambient pressure and
low temperature elastic properties of the ground-state � phase of plutonium metal. The electronic structure and
correlation effects are modeled within a fully relativistic antiferromagnetic treatment with a generalized gra-
dient approximation for the electron exchange and correlation functional. The 13 independent elastic constants,
for the monoclinic �-Pu system, are calculated for the observed geometry. A comparison of the results with
measured data from recent resonant ultrasound spectroscopy for a cast sample is made.
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I. INTRODUCTION

Plutonium remains one of the more controversial metals
because its complex physics and chemistry are not well un-
derstood on a fundamental level. The electronic structure is
responsible for many interesting properties of Pu, for in-
stance, an intriguing and unusual phase diagram1 in which
atomic arrangements of sharply contrasting symmetry and
density compete closely with each other �see Fig. 1�. Al-
though it is generally accepted that this scenario arises from
chemical bonding that is flexible enough to accomplish this,
the controversy focuses on the description and understanding
of the underlying electronic structure. On one hand, dynami-
cal mean-field theory �DMFT� �Ref. 2� may provide a means
to describe the electron-correlation effects, while on the
other, total energies obtained from density-functional theory
�DFT� appear consistent with many ground-state properties
of plutonium as well as the aforementioned phase diagram.3,4

The only possibility to distinguish these and other models
is of course to compare with results of experimental investi-
gations. Fortunately, there have been several recent
electronic-structure measurements for Pu �Ref. 5� and a new
experiment has been proposed6 that may help in this regard.
Certainly, progress on the theoretical side, DFT, DMFT, or
otherwise, provides further motivation for ongoing experi-
mental efforts on plutonium.

Here we are applying DFT to calculate the 13 independent
elastic constants of the monoclinic �P21 /m� ground-state �
phase of Pu. The result of this investigation is important for
several reasons. First, the elastic moduli reflect a detailed
picture of the chemical bonding and are therefore relevant
when discerning the quality of the electronic structure.
Second, single crystal elastic stiffness components for Pu
have been measured7 for �-Pu, for which theoretical data
also exist,8 but never for the � phase. The present results
therefore serve as predictions and could be used for com-
parison with other models or to constrain semiempirical
descriptions9,10 of �-Pu.

In Sec. II we review technical details of the computational
method including our theoretical model for �-Pu. This is
followed by Sec. III in which we report calculated elastic
constants and relate these to data on cast �-Pu. We discuss
some sensitivities of the elastic properties with respect to the

atomic volume, structural relaxations, inclusion of spin po-
larization, spin-orbit �SO� coupling, and orbital polarization
�OP� in Sec. IV. Finally, we provide some concluding re-
marks in Sec. V and a detailed description of the strains
applied to the lattice and the corresponding elastic constants
in the Appendix.

II. COMPUTATIONAL DETAILS

The electronic structure and total energy for �-Pu are ob-
tained from density-functional calculations which require the
crystal geometry and the atomic number �94 for Pu�. The
monoclinic crystal structure has been determined by x-ray
diffraction11 and is rather complex with 16 atoms/cell. It is
characterized by eight atomic positions, two axial ratios, and
a unique non-90-degree angle. Theoretically it is in principle
possible to allow all parameters of this structure to relax, but
the associated computational burden makes it prohibitive
with the present technique. However, our previous study of
the �-Pu structure12 leads us to believe that relaxation effects
are rather small. We will discuss this further in Sec. IV.

For the experimental geometry11 very small strains
��1%� are applied so that the elastic constants can be ex-
tracted using relevant equations which are, for completeness,
included in the Appendix. About four to eight magnitudes of
strains are used for every elastic constant and a fourth degree
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FIG. 1. �Color online� The experimental �Ref. 1� phase diagram
of Pu.
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polynomial is fitted to the corresponding energies thus defin-
ing the harmonic coefficient, relevant for the elastic con-
stants �Eq. �A2��. In all cases, fitting to a second-order poly-
nomial gives a result not different by more than about 10%.
The use of higher orders of polynomials does not change the
results significantly. No structural relaxation is allowed dur-
ing the strain because of computational limitations. This ap-
proximation, however, was shown to be justified for the
elastic-constant calculation of �-U �Ref. 13� and we believe
this is the case also for �-Pu. Nonetheless, it is plausible that
allowing such relaxations could lower the elastic energies a
small amount.

Electron correlations are more pronounced in Pu than
most other metals. Here, these effects are modeled by the
generalized gradient approximation,14 spin polarization, and
SO coupling. This approach is the same as has been used for
Pu in the past3,12 with the exception of the OP present in the
previous scheme. Although ideally preferred, inclusion of OP
severely impacts the efficiency of the computations and for
the demanding task of calculating the elastic constants for
�-Pu this complication is neglected. The effect of OP is
known to be substantial for �-Pu �Refs. 15 and 16� but
electron-correlation effects are weaker in �-Pu. In Table I we
contrast data obtained from calculations for �-Pu with and
without OP, together with recent measurements for cast
�-Pu. We notice that OP expands the equilibrium volume,
resulting in a very close agreement with room-temperature
data.17,18 The theoretical bulk moduli compare favorably
with the measurement as well. All elastic constants are com-
puted using a fixed volume for the unstrained lattice �V0;
Eq. �A1�� and because the OP equilibrium volume is in better
agreement with experiment we chose this value �V0
=20.3 Å3�.

For the present calculations we use a full-potential version
of the linear muffin-tin orbital method implemented by Wills
et al.19 The use of full nonsphericity of the charge density
and one-electron potential is essential for accurate total en-
ergies and in particular when elastic constants are calculated.
This is accomplished by expanding the charge density and
potential in cubic harmonics inside nonoverlapping muffin-
tin spheres and in a Fourier series in the interstitial region. In
all calculations we use two energy tails associated with each
basis orbital and for 6s, 6p, and the valence states �7s, 7p,
6d, and 5f� these pairs are different. With this “double basis”
approach we include six energy tail parameters and 12 basis

functions per atom. Spherical harmonic expansions are car-
ried out through lmax=6 for the basis, potential, and charge
density. The sampling of the irreducible Brillouin zone �BZ�
is done using the special k-point method20 and 54 k points
are utilized for this purpose. Test calculations increasing this
number to 128 result in no significant change in the elastic
constants �less than 3%�. To each energy eigenvalue a Gauss-
ian is associated with 20 mRy width to speed up conver-
gence. Spin-orbit coupling is implemented in a first-order
variational procedure21 for the valence d and f states, as was
done previously,3 and for the core states the fully relativistic
Dirac equation is solved. Total energies are converged to the
�Ry /atom level which typically requires about 100 self-
consistent-field cycles.

III. ELASTIC CONSTANTS

Only in the last few years calculations of elastic constants
for more complex geometries have been attempted from first
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FIG. 2. �Color online� Total energy ��Ry /atom� as a function of
strain parameter ���. The symbols denoted Eqs. A3–A5 correspond
to the strains defined by Eqs. �A3�–�A5� in the Appendix.
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FIG. 3. �Color online� Total energy ��Ry /atom� as a function of
strain parameter ���. The symbols denoted Eqs. A6–A8, correspond
to the strains defined by Eqs. �A6�–�A8� in the Appendix.

TABLE I. Present calculations without orbital polarization and
published with orbital polarization �Ref. 3� �SO+OP� together with
those neglecting spin polarization and SO �no SO�. Atomic vol-
umes, V, in Å3 and bulk moduli, B, in GPa. Experimental data
�Refs. 17 and 18� are for cast �-Pu. Bfix is the bulk modulus evalu-
ated at 20.3 Å3.

Method V B Bfix

Present theory 19.0 59 25

SO+OP 20.3 50 50

No SO 17.3 218 81

Expt. 20.2–20.4 46.6–54.4
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principles, such as our own study on PtSi which is an eight
atom/cell orthorhombic system.22 More recently the elastic
constants of coesite, a monoclinic high-pressure polymorph
of silica, were calculated23 and these compared favorably
with experimental data. Another low-symmetry system, �-U
�a closer neighbor to Pu�, has been investigated within DFT
and the obtained elastic properties agree well between vari-
ous computations13,24,25 and measured data.

Here, we present the first calculated elastic constants for
�-Pu, a material with a high degree of complexity both with
regard to the crystal and electronic structures. The mono-
clinic lattice has 13 independent moduli which can be deter-
mined from the total-energy response to small distortions. A
general elastic constant, cij, is obtained at a fixed unstrained
atomic volume �V0� through Eq. �A1� given in the Appendix.
The 13 applied strains, all summarized in the Appendix, de-
pend on a distortion parameter �.

In Fig. 2 we show the total energies as functions of � for
the strains defined in Eqs. �A3�–�A5� which relate to c11, c22,
and c33, respectively. These elastic constants are associated
with elongations along the x, y, and z directions. Because
these strains are not conserving the atomic volume �the de-
terminants of the corresponding strain matrices are not unity�
the total energy is only lowest for the unstrained lattice if the
calculation is performed at the theoretical equilibrium vol-
ume. Here the total energies are computed at a volume of
20.3 Å3, which is somewhat larger than the calculated equi-
librium volume �19.0 Å3� �see Table I�, as discussed in
Sec. II. This then immediately explains why a negative �,
which compresses the lattice, lowers the total energy in Fig.
2. Notice also in this figure that these axial strains �Eqs.
�A3�–�A5�� show parallel dependence on �. The similarity of
these curves suggests that the volume dependence of b /a and
c /a is small.

In Fig. 3 we show the total energies for the strains defined
by Eqs. �A6�–�A8�. These strains correspond to the elastic
constants c44, c55, and c66, which are associated with the
angle between the respective axes. One of these lowers the
total energy a minute amount for a 0.25% strain, suggesting
that the experimental structure is not the lowest-energy struc-
ture in the calculations but very close. Overall, however, the
total-energy dependencies on these strains, combined with
the remaining ones �Eqs. �A9�–�A15�, not shown�, suggest
that the theoretical treatment reproduces the details of the
monoclinic structure remarkably well.

In Table II we present the calculated elastic coefficient
�C� associated with each strain, defined in the Appendix. The
first six strains �Eqs. �A3�–�A8�� immediately define the elas-
tic constants cii, whereas the other strains �Eqs. �A9�–�A15��
give linear combinations of cij. The number of independent
equations equals the number of unknown elastic moduli re-
sulting in a well-defined system of linear equations that can
be solved straightforwardly. Notice in Table II that all distor-
tions give rise to elastic coefficients that are relatively large
and positive �smallest is 43 GPa�, implying mechanical sta-
bility with respect to all 13 strains.

Next, by solving the linear equations for the cij, we collect
the entries in Table III. Some of the elastic constants, such as
c12 for example, are negative but this should not be inter-
preted as an instability because the actual applied distortions
all give rise to positive elastic coefficients, as mentioned
above. It is also evident that c11�c22 while c33 is smaller.
This likely means that the c /a axial ratio is more sensitive to
external influences, such as pressure and temperature, than
the b /a axial ratio.

The bulk modulus �B� is a special elastic constant that is
related to a uniform change in the atomic density or volume.
On one hand, it can be directly obtained from calculations of
the total energy as a function of the atomic volume �equation
of state�. In practice, the total energy is often fitted to an
analytical expression which defines B. In our case we use the
Murnaghan form26 for this purpose, and the results are pre-
sented in Table I. On the other hand, B can be evaluated from
the elastic compliance constants sij �tabularized in Table IV�,
which are components of the inverse to the elastic-constant
matrix,23

B−1 = s11 + s22 + s33 + 2�s12 + s13 + s23� . �1�

Computing B from the equation of state yields a value of
25 GPa �Table I�, whereas using Eq. �1� �after first numeri-
cally inverting the elastic-constant matrix� gives 21 GPa. The
fact that the bulk modulus obtained from these independent
approaches agrees reasonably well indicates a consistency of
the calculations but also reveals some numerical uncertain-
ties because they are not identical.

As mentioned in Sec. I, there are no experimental single
crystal elastic constants to compare with our theoretical
counterparts. Instead we attempt to relate our results to poly-
crystal data. Recently Migliori et al.17 determined quantities
they labeled as c11 and c44 from their resonant ultrasound

TABLE II. Elastic coefficients �GPa� associated with the strains defined by Eqs. �A3�–�A15� in the Appendix.

A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

120.0 108.8 86.2 43.4 50.6 43.7 247.4 204.0 217.9 301.8 255.0 87.6 126.4

TABLE III. Elastic constants �GPa� obtained from the calculated elastic coefficients given in Table II combined with Eqs. �A3�–�A15� in
the Appendix.

c11 c22 c33 c44 c55 c66 c12 c13 c23 c15 c25 c35 c46

120.0 108.8 86.2 43.4 50.6 43.7 −9.30 1.10 −11.5 2.21 2.02 2.19 −0.25
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spectroscopy measurements of longitudinal and shear sound
speeds of arc-cast �-Pu. The latter refers to an isotropic shear
modulus, G, while the former we will call c̃11 to distinguish
it from the single crystal c11. For an isotropic material they
are related to the bulk modulus through the equation

B = c̃11 −
4G

3
. �2�

Thus, we can collate the measured17,18 B, c̃11, and G with
our calculated single crystal elastic constants using Eqs. �1�
and �2� and an estimated value for the shear modulus,

GV =
1

15
�c11 + c22 + c33 + 3�c44 + c55 + c66�

− �c12 + c13 + c23�� . �3�

This is the Voigt upper bound27 on the effective shear
modulus for a macroscopically isotropic polycrystal and it
gives us B=21, G=GV=49.9, and c̃11=87.5 GPa, compared
to17,18 46.6–54.4, 43.5–43.7, and 104.6–112.8 GPa. Since we
are using the Voigt upper bound for the shear modulus, but
the exact expression �Eq. �1�� for the bulk modulus, it is
interesting to also use the Voigt upper bound for the bulk
modulus to be consistent with the shear modulus,

BV =
1

9
�c11 + c22 + c33 + 2�c12 + c13 + c23�� . �4�

This then gives us slightly different values which are sum-
marized and compared with experimental data in Table V.
Clearly in Table V, the theoretical bulk modulus agrees least
favorably with that of experimental data, while both G and
c̃11 are closer. In addition, GV is larger than the observed
value which is expected because it represents an upper
bound. It should be mentioned that DFT elastic constants are
often within 10%–20% of measurements which is the case
here for both G and c̃11.

IV. DISCUSSION

Although attempts to model the electronic structure as
accurate as possible are made, we do neglect the effect of
orbital polarization to make the calculations computationally

feasible. To partly compensate for this, we choose to evaluate
the elastic constants at the equilibrium volume obtained from
the more complete electronic-structure treatment that in-
cludes OP. In addition, we do not perform structural relax-
ations but assume the experimental crystal structure.

Next, we explore the uncertainties associated with these
simplifications. A complete structural relaxation is not pos-
sible with the techniques applied here but relaxations of the
axial ratios and the monoclinic angle are. We do this by
optimizing each parameter separately, guided by the total
energy, starting from the observed structure.11 For �-Pu this
is easy because our calculations reproduce the experimental
data very accurately �b /a=1.77, c /a=0.75, and �=102°�.
The atomic positions were relaxed in a previous study using
another technique12 and agreed well with the measured
data.11 Consequently, for the unstrained lattice, it is appropri-
ate to assume insignificant issues with relaxation and to use
the experimental geometry close to the equilibrium volume
��20 Å3�. But, as already mentioned, no relaxation is al-
lowed during the very small ��1%� elastic-constant distor-
tions.

Now we investigate the influence of orbital polarization
by collating calculations for the c11 elastic constant. In Fig. 4
we show the total-energy variation as a function of strain
associated with c11 for models including both spin-orbit cou-
pling and orbital polarization �SO+OP� and spin-orbit cou-
pling only �SO�. The atomic volume for the unstrained lattice

TABLE IV. Elastic compliance constants �10−3 GPa−1� obtained from inverting the elastic-constant matrix �Table III�.

s11 s22 s33 s44 s55 s66 s12 s13 s23 s15 s25 s35 s46

9.52 10.9 14.0 23.0 28.3 22.9 2.03 1.58 3.10 −5.65 −6.58 −8.00 0.13

TABLE V. Presently calculated Voigt averages of B, G, and c̃11

together with experimental data �Refs. 17 and 18� for cast �-Pu.
The unit is GPa.

Method B G c̃11

Present theory 30.6 49.9 97.1

Expt. 46.6–54.4 43.5–43.7 104.6–112.8
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FIG. 4. �Color online� Total energy ��Ry /atom� as a function of
strain parameter ��� corresponding to the c11 elastic constant �Eq.
�A3��. The unstrained atomic volume is 20.3 Å3. The blue solid-
circle symbols �left y axis� denote results obtained from a model
including both spin-orbit coupling and orbital polarization �SO
+OP�. The red solid-square symbols �right y axis� refer to a model
with spin-orbit coupling only �SO�. The solid lines are the polyno-
mial fits used to extract c11 �see main text�. The shown c11 is given
in units of GPa.
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is chosen to be that of the equilibrium for the �SO+OP�
treatment �V0=20.3 Å3�. First we observe that for the SO
+OP approximation the total energy is minimized for the
unstrained crystal ��=0�. This result suggests that axial ra-
tios and the atomic volume are relaxed. This is not the case
for the model with spin-orbit interaction only �SO� for which
negative � lowers the atomic volume closer to the calculated
equilibrium �19.0 Å3� with a lowering of the total energy as
a result. Nevertheless, the computed c11 are nearly identical
for the two approaches with a difference of about 1.5%.
These results �132 and 134 GPa� are somewhat larger than
the tabulated value �120 GPa; see Table III� because the cal-
culations shown in Fig. 4 are only for comparison between
the models and are modified as follows: first, we employ 16
k points in the irreducible BZ �not 54� and second, the Fou-
rier series expansion used to represent the electron potential
and density in the interstitial is decreased by about 15%.
These technical changes decrease the computational burden
about 1 order of magnitude which in turn allows us to intro-
duce and test the influence of orbital polarization.

Thus, from Fig. 4 it appears that our approach of neglect-
ing OP but performing the calculations at the equilibrium
volume of the full treatment is a good compromise. When
evaluated at 19.0 Å3 �not shown� all elastic coefficients are
larger by about 20%–45%. As a consequence, c̃11 and G �Eq.
�2�� are both about 35% larger at this smaller V0 and in
disagreement with the experimental data �see Table V�. The
increase in the elastic coefficients is mostly due to greater
attractive 5f bonding and also because the moduli scale in-
versely with V0 �Eq. �A1��.

Because it is likely that orbital polarization has a minor
influence on the �-Pu elastic constants the question arises if
spin-orbit interactions and spin polarization could likewise
be neglected as a reasonable approximation. In Fig. 5 we

again show total-energy results associated with the c11 elastic
constant, now for a model with spin-orbit interaction and
spin polarization �SO� and one without �no SO�. First we
notice that the unstrained lattice ��=0� gives the minimum
energy for both models. This is a consequence of properly
relaxed axial ratios and unstrained �V0� atomic volume. It is
evident that these two models predict significantly different
c11. Both spin-orbit coupling and spin polarization reduce the
effective occupation of bonding 5f-electron states thus weak-
ening the overall bond strength. The result is a lower density,
bulk modulus, and elastic constants. Ignoring these electron-
correlation effects leads to an overestimation of the afore-
mentioned properties and the results shown in Fig. 5 suggest
that it is rather severe for �-Pu. When evaluated at the SO
+OP equilibrium volume �20.3 Å3� there is an improve-
ment, particularly for the simplest �no SO� model �SO+OP:
134, SO: 132, and no SO: 139 GPa�. Nonetheless, the �no
SO� treatment is worsening c11 and better calculations �SO�
are feasible and preferred.

V. CONCLUSION

We have reported the theoretical elastic constants for
�-Pu. The electron-correlation effects are modeled by an an-
tiferromagnetic spin configuration3 including spin-orbit cou-
pling. The elastic-constant calculations in conjunction with
unit-cell relaxations imply that the experimentally observed
monoclinic structure11 is stable and very close to what is
predicted by the theory. Also, the b /a and c /a axial ratios are
shown to be rather similar in their dependence on external
influences such as pressure or temperature, with the c /a
likely being more sensitive.

The strains applied to �-Pu �Eqs. �A3�–�A15�� result in
elastic coefficients ranging from 43 to 302 GPa. This is in
stark contrast to the elastic behavior of �-Pu for which the
tetragonal shear constant is much smaller7 �c��5 GPa�.
One interpretation of this distinct elastic behavior is that the
5f-electron bonding provides a mechanically less stable situ-
ation in �-Pu relative to �-Pu and that �-Pu is closer to a
structural phase transition �a lower phase transformation bar-
rier�.

Test calculations of the c11 elastic constant suggest that
orbital polarization may not be necessary when spin-orbit
interaction is included and the volume is chosen to be that of
the OP calculation which is also close to the experimental
volume ��20.3 Å3�. The computed elastic properties serve
as predictions and can be used as benchmark for other theo-
ries or for development of interatomic potentials and semi-
empirical models for �-Pu. Although an indirect comparison,
present calculated single crystal elastic constants do not ap-
pear to be inconsistent with reported data from polycrystal
�-Pu �see Table V�. The largest relative difference with ex-
periment is for the bulk modulus which is small when evalu-
ated at 20.3 Å3 but better when obtained at the equilibrium
volume �Table I�. The bulk modulus is very soft in �-Pu and
small absolute differences between calculations can be large
in relative terms. Inclusion of orbital polarization certainly
improves the calculations for the bulk modulus while it may
not necessarily influence the elastic constants significantly.
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FIG. 5. �Color online� Total energy ��Ry /atom� as a function of
strain parameter ��� corresponding to the c11 elastic constant �Eq.
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Another plausible reason for the discrepancy between cal-
culations and measurements is the uncertainty of comparing
single crystal calculations with polycrystal data. The single
crystal elastic moduli must be averaged to enable a compari-
son and the inherent uncertainty with this procedure is diffi-
cult to estimate. Future experiments on single crystal �-Pu
could resolve this issue.

Last, our calculations do not address thermal lattice vibra-
tions whereas the measurements are performed at room tem-
perature. The elastic constants show very pronounced soften-
ing with temperature17 and it was proposed that this behavior
is linked to 5f-electron localization. Our own
investigations28,29 �not shown� of �-Pu, employing Debye-
Grüneisen methodology and other quasiharmonic treatments,
suggest that the thermal softening of the moduli can largely
be accounted for by quasiharmonic phonon contributions
with no temperature dependence of the electronic structure.
If this is true, 5f-electron localization is probably not the
primary driver for the thermal softening of the moduli.
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APPENDIX

In this appendix, we present the strains of the monoclinic
��-Pu� structure applied to calculate the 13 independent elas-
tic constants of this phase. The internal energy of a crystal
under strain, �, can be Taylor expanded in powers of the
strain tensor with respect to that of the unstrained crystal in
the following way:

E�V,�� = E�V0,0� + V0��
i

�i�i�i +
1

2�
i,j

cij�i�i� j� j	 + O��3� .

�A1�

The volume of the unstrained system is denoted V0 and
E�V0 ,0� is this system’s internal energy, which corresponds
to the total energy obtained from the electronic structure. The
Voigt notation has been used in the equation above, i.e., xx,
yy, zz, yz, xz, and xy are replaced with 1–6. Of course, yz, xz,
and xy are equal to zy, zx, and yx and for that reason �i is
equal to 1 for i=1,2 ,3 and 2 for i=4,5 ,6. �i above is a
component of the stress tensor. In practice this equation is
here used for all 13 strains and the equation can be written as

E�V,�� = E�V0,0� + V0��� +
1

2
C�2	 , �A2�

where we have introduced � representing a linear combina-
tion of stress components and C, a linear combination of
elastic constants. C will be specified below as we introduce
the various strains, while we are not concerned here about
the stress terms. Next, we present the strains and their corre-
sponding elastic coefficients C,


1 + � 0 0

0 1 0

0 0 1
�, C = c11, �A3�


1 0 0

0 1 + � 0

0 0 1
�, C = c22, �A4�


1 0 0

0 1 0

0 0 1 + �
�, C = c33, �A5�

1

�1 − �2�
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